Specifications

Core Practicals

Qualitative Analysis: Test for Ions

Flame Tests

Any test for ions must be unique, otherwise it would be difficult to tell different ions apart. There are several ion tests you need to know. The first is Flame tests.

  

Flame tests can be used to identify metal ions (cations) in compounds. Steps to produce flame colours include:

  1. wearing eye protection, clean a wire loop by dipping in hydrochloric acid, and then holding in a blue flame for a few seconds

  2. dip the clean wire loop into a solid sample of the compound being tested, and then hold in a blue flame

  3. observe and record the flame colour produced

  

You need to know the colour of :​

  • lithium ions, Li (red)

  • sodium ions, Na (yellow)

  • potassium ion, K⁺ (lilac)

  • calcium ions, Ca²⁺ (orange-red)

  • copper ions, Cu² (blue-green)

Testing for Cations

Compounds that contain transition metals are often coloured. If we react two chemicals together and a new solid is made (one that doesn't dissolve in the solution) we call it a precipitation reaction.

  

Using sodium hydroxide

Dilute sodium hydroxide solution (NaOH) is used to test for some metal ions and can also be used to identify ammonium ions. No precipitate will form for ammonium, but when warmed it will release ammonia gas, and holding a piece of damp, red litmus paper over ammonia gas will turn the litmus paper blue.

Testing for Anions

Testing for carbonate ions

Carbonate ions, CO₃²⁻ are detected using any dilute acid (e.g. hydrochloric acid). Bubbles of carbon dioxide gas will be given off when an acid is added.

  

We can pass the gas through limewater and if it turns the limewater cloudy it will confirm the gas is carbon dioxide.

  

Testing for sulfate ions

Sulfate ions (SO₄²⁻) can be tested for using barium chloride. Barium sulfate will form, which is an insoluble white precipitate.

  

To test for sulfate ions in solution:

  1. add a few drops of dilute hydrochloric acid to the sample

  2. add a few drops of dilute barium chloride solution

  

We add acid first, because carbonate ions will also produce a white precipitate with barium chloride solution. The acid is added so it can react with any carbonate ions that may be present, and so removing them, so they can't give a false result for sulfate ions.

Testing for halide ions

Silver ions will react with halide ions (Cl⁻, Br⁻ or I⁻) to form insoluble precipitates.

  

To test for halide ions in solution:

  1. add a few drops of dilute nitric acid to the sample

  2. add a few drops of dilute silver nitrate solution

  3. observe and record the colour of any precipitate that forms

  

We add acid first, because carbonate ions will also produce a white precipitate with silver nitrate solution. The acid is added so it can react with any carbonate ions that may be present, and so removing them, so they can't give a false result for chloride ions.

Core Practical 7: Identifying Ions

Tests must be carried out to determine the ions present.

  

This will include gas tests, flame tests and precipitation reactions. 

Instrumental Methods of Analysis

New technology, developed over the last few decades, have considerably advanced analytical chemistry. These new instrumental methods have three main advantages, they are:

  • more rapid (produce results faster)

  • more accurate (they are more reliable at identifying elements/compounds)

  • more sensitive (they can detect very small amounts of substances)

  

Each method works in a different way, but they essentially have most features in common:

  1. a stimulus enters the sample (light, heat, current, voltage etc)

  2. this is then read by a detector, producing a signal

  3. the signal is amplified/digitalised

  4. the output is plotted (usually) on a graph

Flame Photometer

Flame photometers (often referred to as flame emission spectroscopes) are an instrumental method used to analyse metal ions

  1. a sample is heated in a flame, and the light emitted from the flame is passed through a spectroscope

  2. the resulting pattern is known as a spectrum

  

Every element has its own specific set of wavelengths, so every pattern is unique (can be thought of as an element's 'fingerprint').​

  

If there is a mixture of ions, one colour may be covered up by another in a flame test. In an emission spectrum, the intensity of the light is actually a measure of concentration of the different elements. This means that the ratio of ions present can be determined.

  

Determining concentrations

A reading can be taken from the flame photometer for different concentrations of a metal ion in solution. These readings are then used to plot a calibration curve.

  

Having a calibration curve of known samples, allows scientists to be able to identify the concentration of a sample just by looking at the graph!

  

For example, if a solution of sodium ions gave a reading of 5 units on the flame photometer, then the calibration curve allows us to read off that the sample had a concentration of 0.025 g/dm³.

 
Get in touch

© revise-science.uk 2020

London, United Kingdom

Terms and Conditions | Privacy Policy

info@revisechemistry.uk